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Spatial ‘intermittency ’ in the velocity field fine-structure of fully turbulent flow 
regions, first observed by Batchelor & Townsend (1949)) is studied further here 
in grid-generated nearly isotropic turbulence and on the axis of a round jet. At 
large enough Reynolds numbers, appropriately filtered hot-wire anemometer 
signals appear intermittent as the turbulent patterns are convected past the 
hot wire by the mean flow. Measurements show that there is a decrease in the 
relative fluid volume (equal to the ‘intermittency factor’) occupied by fine- 
structure of given size as the turbulence Reynolds number is increased. They 
show also that, for a fixed Reynolds number, the relative volume is smaller for 
smaller fine-structure. The average linear dimension of the fine-structure regions 
turns out to be much larger than the sizes of fine-structure therein. At R, = 110, 
for example, the ratio ranges from 15 to 30, decreasing with decreasing ‘eddy’ 
size. It appears to be approaching an asymptote with increasing R,,. 

The flatness factors and probability distributions of the first derivative, the 
second derivative, band-passed and high-passed velocity fluctuation signals 
were also measured. The turbulence Reynolds numbers R, ranged from 1.2 to 
830. The flatness factors of the first and the second derivatives increase mono- 
tonically with R,. Those of the second derivative vary with R$25 for R, < 100, 
and with R$75 for R, > 300. No indication of asymptotic constant values was 
observed for R,, up to the order of one thousand. 

The probability distributions of velocity fluctuations and large-scale signals 
are nearly normal, while the small-scale signals are not. The flatness factor of 
the filtered band-pass velocity signal increases with increasing frequency. 

At the larger Reynolds numbers, the square of the signal associated with large 
wave-numbers may be approximated by a log-normal probability distribution for 
amplitudes when probabilities fall between 0-3 and 0.95, in limited agreement with 
the theory of Kolmogorov (1962), Oboukhov (1962), Gurvich & Yaglom (1967). 

1. Introduction 
It has been suggested for some twenty years that the ‘fine-structure’ of the 

random velocity field in a fully developed, high Reynolds number turbulent flow 
tends to be spatially localized. Since the viscous dissipation of turbulent kinetic 

t Present address: Virginia Institute of Marine Science, Gloucester Pt., Va. 23062. 
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energy occurs primarily in the fine-structure (‘small eddies’), this implies that 
the dissipation may be scattered through the fluid in a rather ‘spotty’ way. This 
spottiness of the fine-structure was first inferred by Batchelor & Townsend (1949) 
from the intermittent occurrence of high frequency contributions in hot-wire 
anemometer signals (see 0 4). They used essentially high-pass filters (the effect 
of successive differentiations) to extract the fine-scale signals from hot-wires 
placed in grid-generated turbulent flows and in turbulent wakes behind cylinders. 
A quantitative measure of the intermittency was chosen as the amount by which 
the ‘flatness factor’ of an intermittent random variable e ( t ) ,  viz. 

exceeds the values 3.0, which is appropriate to a variable with normal (‘ Gaussian ’) 
probability density. They found that the flatness factors of velocity derivatives 
were greater than 3.0, and increased with both the order of derivative and the 
Reynolds number of the turbulence. They therefore suggested that the energy 
associated with the fine-scale components is distributed very unevenly in space, 
and roughly confined to  regions which become smaller as the eddy sizes decrease. 
Specifically, they said the following: “Thus the process of subdivision of the 
fluid into regions of strong and of weak activation will occur in a stepwise manner 
as the wave-number -or the order of the derivative of the velocity - increases. 
The various regions in which wave-numbers of order k, are activated will all 
lie within regions in which wave-numbers k,-l of an order of magnitude smaller 
than k, are activated, and these in turn are enclosed by regions in which even 
smaller wave-numbers are activated.” They also suggested that the linear 
dimensions of these active regions are large compared with the eddy sizes with 
which they are active, and that their mean separation is comparable with the 
integral scale of the turbulence. 

Using a band-pass filter, Sandborn (1959) found that the fine-scale components 
of the turbulence in the full turbulent part of a boundary layer also tend to be 
spotty. Kennedy & Corrsin (1961) observed intermittency in the band-pass 
signals of a fully turbulent free shear layer. They also showed that such inter- 
mittency does not occur in all non-linear random processes. The flatness factors 
measured by Sandborn and by Kennedy & Corrsin agreed roughly with those of 
Batchelor & Townsend. Pond & Stewart (1965) measured the flatness factor of 
the first derivative of the velocity fluctuations in the wind blowing over water 
(in turbulence whose Reynolds number was presumably larger than those in the 
earlier studies), and obtained values as high as 20. Sheih (1969) also observed that 
the first derivative of the velocity fluotuations is intermittent in atmospheric 
turbulence. Gibson, Stegen & Williams (1970; see also Gibson, Stegen RS McConnell 
1970) observed intermittency in the first derivatives of both velocity and 
temperature fluctuations in the wind over the ocean. The flatness factors of the 
derivatives measured by these experimenters were also much larger than 3.0. 
Wyngaard & Tennekes (1970) have reported velocity derivative flatness factors 
as large as 40 in an atmospheric boundary layer. 

It was remarked by Kennedy & Corrsin that, although an intermittent variable 
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is likely to have a high flatness factor, a high flatness factor does not necessarily 
imply intermittency. Therefore, the flatness factor can at most indicate the 
degree of intermittency of a variable already known to be intermittent by other 
observations. A more direct measure is the ‘intermittency factor’ y ,  defined as 
the fraction of time the detection probe sees the variable in a large amplitude 
state.? The intermittency factor of a variable can be inferred from the flatness 
factor only if its probability distributions during both states are known. 

An important theory of intermediate and fine-structure turbulence is given by 
Kolmogorov’s (1 941) local isotropy and similarity hypotheses (see also Batchelor 
1953). This theory postulates that, irrespective of the nature of the large-scale 
motions of a fully turbulent region, the small-scale components of the motion 
are isotropic, and have statistical properties which are uniquely determined by 
the two parameters, the kinematic viscosity Y, and the average energy dissipation 
rate ( E ) .  Soon after the proposal of this similarity hypothesis, Landau & Lifshitz 
(1959) raised doubt about its validity because of the possible presence and 
importance of large fluctuations in the instantaneous energy dissipation rate. 

This concern attracted little attention for several years. Eventually, Oboukhov 
(1962), Kolmogorov (1962), Corrsin (1962), Novikov (1963), Novikov & Stewart 
(1964), Yaglom (1966), Gurvich & Yaglom (1967), Tennekes (1968) and Saffman 
(1970) made some attempts to include this phenomenon in theoretical analyses. 

In their attempt to modify the original Kolmogorov’s similarity hypothesis, 
Oboukhov (1962) and Kolmorogov (1962) introduced the concept of a ‘pure 
ensemble’. They further assumed that the logarithm of Zr, the average energy 
dissipation rate over a volume of linear dimension r ,  had a normal distribution, 
and they thereby arrived at modified expressions for the velocity ‘structure 
function’ and skewness factors. 

Using the idea of successive subdivision of volume, Gurvich & Yaglom (1967) 
attempted to devise a more basic derivation of the log-normal law by means of a 
mathematical description for the consequence of the cascade process of sequential 
breakdown of turbulent eddies. They reached the conclusion that any non-nega- 
tive quantity governed by fine-scale components has a log-normal distribution 
with variance u2 given by 

vz = A +pin (=Y/r), 

where A is a constant depending on the macrostructure of the flow, and p, is a 
universal constant. Saffman (1970) has arrived at  a similar result by a somewhat 
different route. 

Corrsin (1 962) suggested a very explicit model, with energy dissipation localized 
in randomly distributed thin sheets (or slabs). He assumed slab thickness on the 
order of Kolmogorov microscale and spacing on the order of the integral scale. 
His model predicts that the flatness factor of the first derivative of velocity 
fluctuations increases with Rf . Tennekes (1968) modified this idea by suggesting 
a model of randomly distributed ‘vortex tubes’, with diameter on the order of 
Kolmogorov microscale and spacing on the order of Taylor microscale A. This 
predicts that the flatness factor increases linearly with R,. 

wake and a (potential flow) ‘ free stream’. 

(1.2) 

t First defined by Townsend (1948) in his study of the boundary between a turbulent 
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The experiments reported here were first an attempt to find out unequivocally 
whether spatial localization of fine-structure occurs (still a controversial question 
in 1968 when these experiments were begun). With the phenomenon confirmed, 
we set out to extend the Batchelor-Townsend (1949) data indicating dependence 
on Reynolds number, and the Batchelor-Townsend and Kennedy-Corrsin (1961) 
evidence for dependence on wave-number. Finally, we wanted to determine the 
extent to which positive random variables characterizing the fine-structure 
showed log-normal probability distributions, asreportedby Gurvich & Zubkovskii 
(1963), Sheih, Tennekes & Lumley (1971), Stewart, Wilson & Burling (1970) 
and Gibson, Stegen & Williams (1970). 

2. Experimental equipment and procedures 
2.1. Aerodynamic facilities 

(i) Grid-generated turbdence (22, = 12.6, 21.8). The wind tunnel used to generate 
these two flow fields was that used by J. C. Bennett (private communication). It 
has a 12 x 18 in. test section with a closed return. The grids are both of solidity 
about 0.34 with mesh sizes M = Q and 4 in. Measurements were made at  x/W = 42, 
and mean speed = 20.6 f t  sec-l. Reynolds numbers R, and ‘Kolmogorov scale 
frequencies ’ f * were evaluated from the turbulent energy decay rates and turbu- 
lent intensities measured by Bennett. f * is the frequency observed by the fixed 
hot-wire probe when a disturbance of size equal to the Kolmogorov microscale, 
7 = (v3/(s))*, is convected past by the mean flow: 

f* = .V((~)/v3)4/2n. (2.1) 

(ii) Grid-generated turbulence strained by slight contraction to make it more nearly 
isotropic (R, = 39 to 150). The wind tunnel was that used by Comte-Bellot & 
Corrsin (1966). It has a closed circuit and a test section 32 f t  long, 3 x 4ft in cross- 
section. The grids used are of square rod, square mesh, bi-plane construction. 
The mesh sizes are 1 , 2  and 4in., and the solidity 0.34. Measurements were made 
at  x /M equal to or greater than 42, and mean speeds of 26.3,41.7 and 83.4 ft sec-l. 
The turbulence decay and scales were reported by Comte-Bellot & Corrsin. 

(iii) Round j e t  (RA = 350 to 830). The jets were generated by two single-stage 
axial fan units in tandem exhausting directly through nozzles with diameters of 6 
and 2.53 in., with contraction area ratios of 6.67 : 1 and 37.5: 1.  Measurements were 
made on the jet axes, fifty orifice diameters from the nozzles. The mean spee& 
were 8.0, 10.0 and 19ft sec-1 at the measurement points. The turbulent charac- 
teristics at R, = 830, the largest value, were measured by Gibson (1 963). Cases with 
lower Reynolds numbers were obtained by lowering the speed and/or reducing 
the orifice diameter. Reynolds numbers and Kolmogorov-scale frequencies were 
estimated from those at RA = 830 by assuming similarity and local isotropy of the 
turbulence in the jet. 

2.2. Hot-wire anemometers 

Velocity fluctuations in the grid-generated turbulence were measured with 
Shapiro & Edwards constant current hot-wire anemometer units. Some calibra- 
tions are given by Comte-Bellot & Corrsin (1971). The compensation circuit 
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settings were determined with the square wave injection technique (Kovasznay 
1947). Wire overheat ratios of 0-3 to 0-4 were used. Owing to the smallness of the 
turbulence levels (about 2 yo), the amplifier output (a.c. coupled) is very nearly 
linearly proportional to the velocity fluctuations. 

For the measurements in jets, a Disa type 55D01 constant temperature 
anemometer was used in conjunction with a Disa type 55D 10 linearieer. An 
overheat ratio of 0.7 and a linearizer exponent setting of 2.22 were found to 
yield a linear calibration curve. The linearizer output was filtered by a Disa type 
55 D 25 auxiliary unit, which is an amplifier with separately adjustable low and 
high cut-off frequencies. The output of the auxiliary unit is then essentially 
proportional to streamwise velocity fluctuations. For discussion of possible 
residual non-linear effects at  large turbulence levels, see Rose (1962) and 
Heskestad ( 1 9 6 5 ~ ) .  

Hot-wire probes were made of jeweller’s broaches encased in Nu-Weld dental 
cement, with a main shaft of t in .  stainless steel tube. Only the streamwise 
turbulent velocity component was measured, with a single wire set normal to 
the mean flow. All data were taken with platinum-( 10 yo) rhodium wire etched 
from Wollaston type after the silver coating had been soldered to the tips of 
the jeweller’s broaches. Wires 0-00005in. in diameter and 0.01 to 0.015in. long 
were used, except for measurements of band-pass signals of grid-generated 
turbulence. There, in order to increase the signal-to-noise ratio of band-pass 
signals with large mid-band frequencies, 0*000025 in. wires, 0.01 in. long, were 
used without thermal compensation. The reciprocal of the thermal time constant 
of this wire is about 6.5 kHz, which is higher than the Kolmogorov-scale frequency 
(f * = 5.9 kHz) of the field in which these wires were used. 

2.3. Fine-structure signal acquisition circuits 
Three kinds of circuits were used to extract fine-scale signals from the outputs 
of the anemometer amplifiers : differentiation circuits, band-pass filters, and high- 
pass filters. 

An RCA CA301OA integrated circuit operational amplifier was used to 
obtain the first derivative. The output was differentiated again, if desired, with 
a Disa type 55806 differentiator with nominal time constant of 0.2msec. In 
this experiment, differentiation tends to reduce signal-to-noise ratio; a Krohn- 
Hite model 330-M filter with separately adjustable low and high cut-off fre- 
quencies and 24db oetave-1 cut-off at both ends was used to attenuate the 
unwanted high frequency signal and noise. A block diagram is shown in figure 1. 
When the first derivative was measured, the filter was connected directly to the 
output of the CA3010A. The frequency responses are shown in figure 2. 

The Krohn-Hite filter was used to obtain band-pass signals with various mid- 
band frequencies f, and with bandwidths Afif, greater than 0.5, where 

f h  and& are the upper and lower 3 db points of the band-pass filter, respectively. 
To realize a filter with relative bandwidth less than 0.5, a Dytronics Model 720 
filter was used in cascade with the Krohn-Hite filter. The Dytronics filter has 

19 F L M  50 



290 A .  Y.-S. Kuo and S.  Corrsin 

three constant-percentage bandwidth settings, all less than 0.5, the minimum 
bandwidth of Krohn-Hite filter (given in Comte-Bellot & Corrsin 1971). The 
cascade of the two filters was necessary because of the insufficient attenuation 
rate on the tails of the frequency response curves of the Dytronic filter. The 
Krohn-Hite filter characteristics are given in the instruction manual. 

Four-pole Butterworth high pass filters with amplifiers were also used to extract 
fine-structure signals. The last stage amplifier has a 6 db octave-1 high-frequency 
cut-off to reduce the noise. The frequency response is shown in figure 3. 

3 3 p p F  

Krohn-Hite 

band-pass 
filter 

edt) 330-M 

FIGURE 1. Differentiation circuit. 

2.4. Flatness factor measurements 

Figure 5 shows the system block diagram for measuring the flatness factor of a 
random voltage e( t ) .  A Philbrick operational amplifier (response down l d b  at  
20 kHz) was used to raise the input signal to a desirable level. Its output r.c. circuit 
eliminated any d.c. level due to drift and improper bias. 

A signal proportional to e2(t) was obtained with a Philbrick Model Q3-MlP or 
a GPS Model MU-405 multiplier, whose frequency responses and static transfer 
characteristics are shown in figures 4 and 5 .  The time average? was taken with 
a Kramer timer and SOS Model SI-100 integrator. The integrator output Q1 
was proportional to e", and was read with a Cubic Model V-46P digital voltmeter. 
With switches at  positions 2, the multiplier output was squared and partially 
averaged by vacuum thermocouples, then amplified with Honeywell Model 
A20B d.c. amplifier to a desirable amplitude before entering the integrator. Thus, 
the voltmeter would read a value proportional to 2. The flatness factor was then 
calculated by the formula, 

P = K 2 ,  Q 
Q1 

t In this experiment, the random variables are stationary and time intogral scales are 
non-inkite, which is a sufficient condition for an ergodic property (see Leipmann 1952). 
Therefore, the time averages of the experiment may be compared with the ensemble 
averagea commonly used in theoretical analyses. 
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where the constant K was determined with the use of sine waves and Gaussian 
‘noise’ as e(t). The flatness factors of sine wave and Gaussian noise are 1-5 and 
3-0, respectively, and the constants determined with them agreed within 2 %. 

The vacuum thermocouple circuit consists of a variable protective resistor 
in series with five vacuum thermocouples with heaters connected in parallel 
and thermocouples connected in series. The use of multiple vacuum thermo- 
couples not only increases the output capability, but also helps to average out 
the randomly ‘imperfect ’ (non-square) characteristics of individual ones. The 
collective transfer characteristics was satisfactory (figure 7). 

The Honeywell d.c. amplifier has a frequency response flat up to 2OkHz 
(- 1 db) and a d,c. drift negligible with respect to signal level. 

The integrator has an inherent error voltage E, across the input terminals, 
which depends on the output readings as shown in figure 6. During the period of 
integration, this error voltage causes a current flow in the input circuit, thus 
yielding an error at the output, or a ‘drift’ in cases when the output should be 
zero. The drift characteristics are also shown in figure 8, with various sources 
and source impedances. Since the error voltage changes sign at the mid-scale of 
the output reading, the error was minimized by setting the initial reading at such 
a magnitude that the initial (before integration) and the final (after integration) 
readings were roughly symmetric about the mid-scale. 

Owing to the finite useful ‘ceiling-to-floor ratio ’ of the multipliers’ transfer 
characteristics, their input signal levels cannot be arbitrarily set. If the input 
signal is too high, portions of the signal will be clipped. If the input signal is too 
low, a large part of the signal will be smaller than the levels above which the 
multipliers square properly. Figure 9 shows the effect on the measured flatness 
factors of the input amplitude. The values at the level parts of the curves were 
considered to have least errors, and used as ‘true’ flatness factors. These values 
were also obtained by setting the amplifier gains such that the multipliers’ 
outputs were observed to be barely clipped on an oscilloscope. This ‘barely 
clipped’ criterion was then used to set the amplifier gain. 

2.5. Probability measurements 

The probability distribution functions were measured with a QTL Model 317 
amplitude distribution analyzer, which measured the relative time duration an 
input signal exceeds some reference level. Numerical differentiations of the curves 
faired to the measured points were performed with I.B.M. Model 7094 computer 
to obtain probability density functions. More than sixty points were taken from 
each faired curve as input data for the computer program. Triads of adjacent 
points were fitted with a second-order curve, whose secant slope was then evalu- 
ated. This slope equals that of the midpoint tangent. A test of this differentiation 
technique made on a normal distribution curve showed precision better than that 
of the data. 

2.6. Interrnittency measurements 

Townsend’s technique for measuring the intermittency of an intermittent signal 
e(t)  was used. It involves generating a signal I ( t )  that is a random square wave, 
equal to a constant (e.g. 1.0) when e(t)  is at  its ‘higher state’, and zero when e(t)  

19-2 
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10-4 I I 1 I 

Frequency (kHz) 

FIGURE 2. Frequency response, differentiation circuit: K-H filter (24 db octave-' cut-off 
at both ends) set at 1 Hz-20 kHz. 
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FIGURE 3. Frequency response, high-pma Butterworth filter with amplifiers. 
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FIGURE 4. Frequency response, multipliers used as squaring circuits. 
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S.0.S. 

SI-100 timer 
- V-46P 

FIGURE 5. Block diagram of the flatness-factor measuring devices. ( N means short time 
average, which is due to time constant of vacuum thermocouples). 

is at its 'lower state'. The time average of I ( t )  is the 'intermittency factor' 
of e ( t ) .  Electronic circuits to generate the intermittent signal I ( t )  have been 
developed and used in experiments to study the turbulent-non-turbulent inter- 
faces at a 'free' fluid boundary. A detailed historical account may be found in 
Kohan (1969). 

In  the present investigation, the intermittency circuits were built with the 
same operating principle as earlier ones. A block diagram, indicating the opera- 
tions on a hypothetical signal, is given in figure 10 (a), the actual circuit in figure 
lo@). The incoming voltage e(t)  from the filter is rectified by the rectifier circuit, 
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with the variable resistor to assure equal gain a t  both signal polarities. To reduce 
noise, the rectified signal is made to work against a bias at  the base of the tran- 
sistor Q 1, which works as an emitter follower. The pair of transistors Q 2 and Q 3 
constitutes a level comparator, with reference level controlled by the 20-turn 
trim pot R 2 .  

The signal at  the collector of Q 2  is roughly a random square wave, as shown a t  
the output of the fkst level comparator in figure 10 (a) ,  where the finite transition 
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FIGURE 6. Static transfer characteristics of multipliers used as squaring circuits. 
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time between two states has been exaggerated. The finite transition time is due 
to the need for a 0.15 volt excursion at the base voltage of transistor Q 2 ,  in 
order to change it from cut-off to saturation, or vice versa. This signal also has a 
problem of 'drop-out'. During the period when e(t) is entirely at its 'higher state', 
the magnitude oE the rectified signal will nevertheless fall below the comparator 
reference level at random times, giving a spurious zero region in I ( t ) .  Anr.c. circuit 
is used to smooth over such drop-outs. The time constant of the r.c. circuit is set 
approximately at (277fP)-l, where,fp is the frequency at  which the spectrum of e(t) 
is maximum. Clearly, such smoothing causes some error at  the transition points 
in I(t) .  

"6 
P 

Output reading (yo of full scale) 

FIGURE 8. Drift characteristics of integrator: A, Ei (i) shorted, or (ii) from output of 
oscillator (output impedance 630 a), either without signal, or with lOOCPS sine wave, 
1 volt peak to peak; V, Eifrom Scott 81 1A noise generator (output impedance 350 a) either 
with or without signal; 0, E,, error voltage across input terminals. 

The d.c. level of the smoothed signal is then blocked by another r.c. circuit 
before the signal passes through emitter follower Q 4 and the second level com- 
parator. The smoothed signal is obtained from the connector S2 and displayed 
with e(t) on a Hughes Model l04D dual trace storage oscilloscope. By comparing 
the traces of e( t )  and the signal from S 2, it is possible to adjust R 2 until the latter 
follows the former closely. 

The transistors Q 5 and Q 6 constitute the second-level comparator that trans- 
forms the smoothed signal into a random square wave. The smoothed signal has 
a sufficiently high magnitude so that the level comparator output can be taken to 
be a square wave with rise and fall times small compared with the typical periodof 
an on-off cycle. The transistor Q 7 brings the two states of therandom square wave 
to zero and about 3 volts. The signal from the connector S 3 is then displayed with 
e( t )  on the storage oscilloscope; R 4 is adjusted until the two correspond closely. 
Then the signal at  S 3 is I ( t ) .  
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Two statistical properties of I ( t )  were measured: the average pulse frequency n 
and the intermittency factor y. The average pulse frequency was measured by 
counting the pulses of I(t)  with a CMC Model 226B universal counter-timer. To 
measure intermittency factor, a 500 kHz sine wave and I ( t )  were fed to a NAND 
gate made of an RCA 220513 integrated circuit. The average pulse frequency of 
the NAND gate output was measured with the counter, and its ratio to 500 kHz 
is the intermittency factor. 

F I  
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7 -  

F 

5 -  

4 -  

(iii) 
.. 3 -  0 
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Amplitude of input (arbitrary scale) 

I I I I I I I I I I  

1.0 I .2 1.4 1.6 1.8 
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FIGURE 9. Apparent flatness factor 'us. amplitude of input: (1) a2u/at2, R, = 110, ,f, = f *, 
F = 9-30; (ii) au/& R, = 150, fc =f*, F = 5.60; (iii) signal from Scott noise generator 
(ASA), F = 3.0. 

The measured apparent values of y and n depended on the settings of the 
reference levels of the level comparators. The decisions on optimum levels were 
made by careful comparison between the input and output signals displayed on 
the storage oscilloscope. A repeatability w-ith I 5 % was achieved. A more de- 
tailed investigation was made on the particular case of the grid-generated 
turbulence with R, = 110. The reference levels yielding y = 0.30 for its high-pass 
signal were checked to be optimum by the following experiment. After the 
reference levels were set according to visual comparison of the displayed signals, 
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FIGURE 10. Intermittency-measuring device: (a )  block diagram, and operations on a 
hypothetical signal; ( b )  circuit diagram. 
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the turbulence-generating grid was removed from the wind tunnel, while the 
mean flow velocity and the settings of all instruments were kept unchanged. The 
intermittency circuit output remained at zero, showing that the reference levels 
were large enough to eliminate noise effects. Then the gain of the hot-wire 
anemometer amplifier was increased by one step (a factor of 4 2 ) ,  and I ( t )  was 
observed to be at  its ‘on state’ occasionally; this suggested that the reference 
levels could not be lowered appreciably without getting spurious pulses. 

3. Experimental results 
3.1. Observation of Jine-structure intermittency 

Approximate visualization of the instantaneous spatial structure of the turbulent 
velocity field is given by an oscillogram of the hot-wire anemometer output. The 
interpretation of time history at a fixed point as instantaneous spatial structure 
is a ‘Taylor approximation’, which turns out to be very good over the full 
spectral range for the small turbulence level case (the grid-generated turbulence 
with (u2)h 0.02g; see Comte-Bellot & Corrsin 1971). It is only fair in the large 
turbulence level, inhomogeneous structure of the jet axis where (u2)* z 0 . 2 8  
(see Heskestad 19653; Fisher & Davies 1964; Lumley 1965; Champagne, Harris 
& Corrsin 1970). 

The transduction of velocity fluctuation into voltage allows easy selection of 
restricted domains in the wave-number space by filtering in the frequency domain. 
Ideally, we should like to be able to select turbulence in a limited wave-number 
magnitude range, a spherical shell in wave-number space. The one-dimensional 
character of our system, however, gives us a limited domain which is an 
infinite slab perpendicular to the mean flow direction, hence the ,%,-axis. A perfect 
band-pass filter, rejecting all signals outside the band w,-to-w,, will therefore 
deliver velocity structure lying in a slab between k,, = w, 0-l and k,, = wb 8-1. 
This contains velocity structure with all wave-number magnitudes k 3 kla. 
Nevertheless, the voltage thus obtained is fairly local in wave-number space. 

Figure 11 (a)  (plate 1) shows typical oscillograms of band-pass and high-pass 
signals from a hot wire in the grid-generated turbulent flow field at moderate 
Reynolds number, R, = 110. The low frequency signal is more or less uniformly 
distributed in time, while the high frequency signals appear to be intermittent. 
With Taylor’s approximation, high frequency signals correspond to the velocity 
fluctuations associated with the fine-scale components of motion, as it is con- 
vected past the hot wire by the mean flow. Therefore, the intermittency of the 
high frequency signal implies localization of the fine-structure in space. 

Figure 11 (b)  (plate 1) shows the oscillograms of the total turbulent signal and 
of its first and second time derivatives. The derivative signals emphasize the 
fine-scale components, and their ‘crest factors’ appear to increase as the order 
of derivative increases. However, they do not appear explicitly intermittent as 
the sharply band-passed high frequency signals do. This is partly because the 
Reynolds number of the turbulence is not high enough to remove the spectrum of 
derivative signals far away from that of the energy containing eddies, which are 
more or less uniformly distributed in space. It is also partly because the derivative 
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operation does not cut out the low frequency parts of the signal as completely 
as does the filter system described earlier. 

Since the viscous dissipation of turbulent kinetic energy occurs primarily in 
the fine-structure, fine-structure intermittency implies that the energy dissipa- 
tion will occur in a spatially ‘spotty’ way if the Reynolds number of the turbulent 
flow is high enough. 

3.2. Platness factor 

The flatness factor F of a random variable e is defined as 
r . tm 

where P,(a) is the probability density of e(t). Since the fourth moment depends 
more heavily on the large values of e than does the second moment, the flatness 
factor is a measure of the relative extent of the skirts of the probability density 
curve. A random variable with normal probability density has a flatness factor 
of 3-0. ( F - 3 - 0 )  is called the ‘kurtosis’. The roughly normal variable, whose 
probability density function is more peaked in the neighbourhood of the mean 
than is a normal density of the same standard deviation, will have positive 
kurtosis. So will a two-state variable with zero ‘lower state’ and normal ‘higher 
state. 

As seen in (3.l),the probability density function uniquely determines the flat- 
ness factor, but the converse is of course not true. Though an intermittent variable 
is likely to have a large flatness factor, a large flatness factor does not necessarily 
imply intermittency. Therefore, flatness factor can be used to indicate the degree 
of intermittency only if it is known by other observations that the variable is 
intermittent. Batchelor & Townsend (1949) suggested a relation between flatness 
factor and intermittency factor: 

which assumes the intermittent variable varies with a normal probability dis- 
tribution for a fraction y of the total time (the ‘higher state’), and is zero for the 
remainder of the time (the ‘lower state’). 

Having observed fine-structure intermittency on the oscillograms (as de- 
scribed in 8 3. l ) ,  we could use measured flatness factors of the velocity derivatives 
and band-pass signals to indicate the degree of intermittency, as well as the degree 
of deviation from normal distribution. The flatness factors of the velocity 
fluctuations u were also measured and found to be quite close to 3.0, as has been 
reported by other investigators. 

The noise spectrum of a compensated hot-wire signal ordinarily increases with 
frequency (because the basic noise spectrum is ordinarily flat), while the energy 
spectrum of the turbulence decreases sharply with increasing frequency in the 
high frequency range. Differentiation accentuates the high frequencies present 
in the total signal, so it tends to reduce the signal-to-noise ratio. Therefore, some 
kind of low-pass filter is necessary to cut off the highest frequencies, at which the 
noise completely masks the signal. 

7 = 3.0/P, (3.2) 
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The effect of a sharp (24 db octave-I) high cut-off frequency on the flatness 
factors of the first and the second derivatives of the signal are shown in figures 
12 (a),  (b )  respectively. The flatness factors tend to increase withincreasing cut-off 
frequency, at  least up to the Kolmogorov scale frequency. The rate of increase is 
greater for the second derivative than for the first, and for the higher Reynolds 
number flow; both differentiation and RA give relatively more high frequency 

15 I 1 

5 t  
4 t  

-v V- 

b 

0.5 0.6 0.7 0.80.9 1 1.5 2.0 
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fcF* f c l f  * 
FIGURE 12. Flatness factors as functions of high cut-off frequency jc/j.* 

(a) aupt - 
R A j* kHz 

Grid-generated 49 8.7 
turbulence 72 6-7 

+ 110 5.9 

A 350 1.78 
x 830 6.55 

Jet axis 

( b )  aZuiat2 - 
R A  f * kHz 

A 12.6 3-66 
v 39 2.40 
0 72 6.70 
0 140 13.8 

350 1.78 
x 830 6.55 

1 
‘energy’. This tendency agrees with the observation that the flatness factors of 
band-pass signals increase with frequency, to be discussed later. If the cut-off 
frequency is too high, however, the output includes more additional noise than 
signal, and the flatness factor begins to level off, since the noise is approximately 
normal, and will eventually decrease.This levelling-off tendency is observed par- 
ticularly in the first derivative signals of lower Reynolds number flows, which 
have less high frequency ‘energy’. 

The measured flatness factors of the first and the second derivatives are shown 
in figures 13, 14 as functions of R,, which ranged from 12 in a grid-generated 
turbulence to 830 on the axis of a round jet. To be consistent for differing Reynolds 
number flows, the cut-off frequencies of the low-pass filters were set at  the 
frequencies of the Kolmogorov microscales.-f This cut-off is well above the 
derivative spectral peak. Some measurements by other investigators are in- 
cluded in figures 13, 14 for comparison and extension. 

c/2nq corresponding to the convection of q-scale past the 
hot wire. q E (vS/(e))*.  

t That is, the frequency f * 
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Since Batchelor & Townsend (1949) did not specify the cut-of€ frequency of 
their circuits, an effort was made to discover their procedure by matching their 
results. By repetition of their experiments, we established the strong likelihood 
that they used a single cut-off frequency for all cases. The flatness factors as a 
function of R,, with various constant cut-off frequencies, were compared with 
the Batchelor-Townsend data. Results with cut-off frequency at 3.5 kHz were 
found to agree best with their data. We then adjusted their second derivative 
data to  the values consistent with cut-off atf*. Their first derivative data were 
not adjusted because the variation of the flatness factor is comparatively small 
at  these low Reynolds numbers. 

100 L 1 

50 

20 
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5 
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0 

10 20 50 100 200 500 103 2x103 5x103 104 

Rh 
FIGURE 13. Flatness factor of &/at as function of Reynolds number R,, with fo = f *. 
8 ,  f, = 1.2f*; 0 ,  fc = f*.  

0 Present study. 

a Wygnanski & Fiedler (1970). 
v 
4 

0 
@I Shieh et al. (1971). 
R 

Batchelor & Townsend (1949), not corrected for cut-off. 

Wyngaard (1967), two points, f, = 1.4f *. 
Pond & Stewart (1965), RA established by Shieh et al. (1971). 
Gibson, Stegan & Williams (1970). 

Wyngaard & Tennekes (1970), Comte-Bellot (1965). 

Batchelor & Townsend (1949) inferred from the original Kolmogorav similarity 
hypothesis that the limiting values of the flatness factors of velocity derivatives 
should be independent of the large-scale properties of the turbulence, and should 
reach universal constant values at  large enough Reynolds numbers (see also 
Batchelor 1953). The flatness factor of the first derivative is presented in 
figure 13. In  addition to the new data for isotropic grid-turbulence and round 
jet, we have included a point by Wygnanski & Fiedler (1970) in a plane shear 
zone, a point by Wyngaard (1967) in a curved channel, two points by Comte- 
Bellot (1965) in a plane channel, four points estimated from the data of Gibson, 
Stegen & Williams (1970) and a single point from Pond & Stewart (1965) with 
R, estimated by Sheih, Tennekes & Lumley (1971). In  addition, we have added 
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two large shaded areas indicating clouds of points from Wyngaard & Tennekes 
(1970) and from Sheih, Tennekes & Lumley (1971). 

The Wyngaard-Tennekes data have been weighted more heavily in drawing 
the curve. The Sheih-Tennekes-Lumley values are well below those found 
typically by several other investigators. The R, values assigned to the Gibson- 
Stegen-Williams data are quite uncertain, having been estimated by assuming 
that R, M A(1*3u*)/v, where u* is the ‘friction velocity’, [ ~ , / p ] q .  Here 7, is 
shear stress at  the boundary and p is density. 

t - - 

ffl 

FIGURE 14. Flatness factor of azuJat2 as function of Reynolds number R,, with f, = f *. 
0 Present study. 
0 
a 

Batchelor & Townsend (1949), adjusted to fc = f *. 
Wyngaard (1967), f c  = 1-4f *. 

The flatness factor of the first derivative increases likeR$2 at  Reynolds numbers 
below 200. Then, following a transition zone up to 500, they may increase more 
rapidly (the line is drawn for R f 6 ) ,  instead of levelling off. 

up to 
R, z 100, and N Rt75 for R, > 300. Apparently, the flatness factors of the deri- 
vatives show no sign of approaching constants at Reynolds numbers R, of the 
order of thousands, which is believed to be high enough for the universal 
similarity hypothesis to apply (Corrsin 1958; Bradshaw 1967). 

In  fact, it  is doubtful that the flatness factors of the derivatives are determined 
wholly by the large wave-number components of the turbulence. Suppose that 
we have a turbulence with Reynolds number large enough for the derivative 

1.3u, as an estimate for d z ,  the r.m.8. turbulent velocity normal to the ground in an 
atmospheric boundary layer WBB suggested to us by Wyngaard. 

In  figure 14, the flatness factor of the second derivative - 
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signal to  appear intermittent (e.g. the second derivative signal appeared inter- 
mittent a t  R, = 830), then the flatness factor of this intermittent signal depends 
in part on the signal durations over which the signal is ‘zero’. But the statistics 
of these durations may be associated with the scales of the energy-containing 
eddies, not the smallest eddies. 

Corrsin and Tennekes explored some consequences of simple models, which 
included intermittency of the fine-structure, and estimated the consequent 
dependence of the flatness factor of the first derivative on Reynolds number to 
be N Rk5 and N R,, respectively. This experiment shows a dependence weaker 
than either of those estimates. 

I I I I I I l l  I I  I I I I I I l l  I 1  I I I I I I I  

0.05 0.1 0 2  0.5 I .o 2 5 

A f f m  

FIGURE 15. Flatness factor of band-pass signal as function of relative bandwidth; grid- 
generated turbulence with R, = 100, f * = 5-9 kHz. 

The Gurvich & Yaglom (1967) model with log-normal distribution of positive 
random variables predicts that 

where 9 is a non-negative quantity governed by he-scale components, K is 
any positive integer, ,u is a universal constant empirically estimated to be 0-4 
by Gurvich & Yaglom from measured spectra of (au/at)2 and (aw/at)2. If we take 
q5 = (au/at)2 and K = 2 ,we get the flatness factors of the derivatives proportional 
to R0,.6, which agrees with the high Reynolds number data of the first-derivative 
signal, The value of ,u for the distribution of (a2u/at2)2 is not empirically available 
at present, so no check on the dependenlee of the flatness factor of Pulat2 on R, 
can be made. 

The flatness factors of band-pass signals were measured in the grid-generated 
turbulence at R, = 110 and 86.5. Figurle 15 shows the effect of relative band- 
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width on the flatness factors for a fixed midband frequency. All the curves peak 
around A f l f ,  = 0.3. F also increases with increasing f m  for fixed Afl f , .  

l?or a given midband frequency, the flatness factor decreases as bandwidth 
increases from 0.3, because the greater bandwidth passes relatively more low 
frequency component, which is essentially normal. On the other hand, as Af 
decreases toward zero, the filter’s time constant must increase; at  some Af the 
time constant gets larger than the time scale of the on-off cycle of the intermittent 
signal. Then the filter performs some kind of weighted average on the signal and 
the flatness factor of the filter output decreases-i- With a very narrow-band 
filter of bandwidth 6 Hz between - 3 db points (Hewlett Packard model 302A 
wave analyzer), it  was found that the flatness factors of filtered signals were very 
close to 3.0 for all midband frequencies. 

f?n& 

10 20 50 100 2 x 1 0 ~  5 x 1 0 ~  103 2x103 5x103 104 
50 I I I I I 1 I I I 

+ 

20 

10 o Rh=110 f * = 5 . 9  HZ 
86.5 2-63 

Random noise 

FIGURE 16. Flatness factor of band-pass signal as function of midband frequency, for fixed 
relative bandwidth A f / fm = 0.52 ; grid-generated turbulence. 

To investigate the flatness factors of spectrally local constituents of the 
turbulent velocity, it  is desirable to have a filter as narrow as possible, but not 
so narrow that the time constant will play a smoothing role. Since P at first 
increases monotonically with decreasing A f l f , ,  it seems likely that the levelling 
off and eventual decrease are a consequence of narrow-band smoothing. There- 
fore, we chose a working band width A f l f ,  = 0.52, slightly wider than that which 
gives Fmax. 0-52 also happens to be the minimum bandwidth of the Krohn-Hite 
filter. 

t It is generally found that any kind of ‘ smoothing’ of a non-normal stationary random 
variable makes it tend toward normality. In  the limit of ‘infinite smoothing’ this is 
analogous to the‘ Central Limit Theorem’ (see Rice 1944,1945). A more formal version of 
the ‘ Central Limit Theorem’ for continuous random functions has been presented by 
Lumley (1970). 
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Normal distribution P e ,  (b) - 
o u  ). 0.5 

b 

b 

FIGURE 17. Frobabilitydensities of u, aujat, (a)in grid-generated turbulence, 
R, = 72, (b)  on the axis of a round jet, Rx = 830. e i  = ez/(e2). 

20 F L M  50 
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The flatness factors Gf fixed relative bandwidth signals are shown in figure 16 as 
functions of midband frequency, fm/f *. For the turbulent velocity, the flatness 
factors start with 3.0 at low f m  and increase monotonically with f,,. For inter- 
mittent signals this behaviour would be consistent with the Batchelor-Townsend 
inference quoted in $1 .  The fall-off at  very high fm is associated with the high 
noise-to-signal ratio at  high frequency. The flatness factors of band-passed 
signals of normal (Gaussian) random noise, shown in figures 15 and 16, are 
approximately 3.0, independent of both bandwidth and midband frequency. 

3.3. Probability density and distribution function 

If Pe(a) is the probability density function of a random variable e( t ) ,  then by 
definition Km P,(a)da = 1. (3.4) 

A conventional way to non-dimensionalize the probability density is with the 
standard deviation, (e2)J: 

Iq (e2)>t.Pe(a)d (L) 3 P,(b)db = 1. 
-m (e”* --m 

Thus, the suitable non-dimensional variables are 

and 

(3.5) 

which has a standard deviation of 1.0. 
In figures 17(a, b), the probability densities of u, &/at, and a2u/at2 in a grid- 

generated turbulence (R, = 72) and on the axis of a round jet (R, = 830), were 
plotted in these non-dimensional variables. The normal density, 

(3.7) 

is included for comparison. Evidently, u(t) is virtually normal, and its derivatives 
depart from normality. The departure increases with increasing order and with 
increasing Reynolds number. All deviations from normality are of the same type, 
tending to have higher probability than the normal curve in the neighbourhood 
of zero e and at very large values of e/(e2)3,  and to have lower probability at  the 
intermediate values. This is a feature that an intermittent signal should have. 
If it  were exactly zero during the ‘off’ periods, there would of course be a Dirac 
function a te  = 0. The &/at behaviour is oonsistent with the old data of Batchelor 
& Townsend (1947) and give a skewness factor ( a ~ ~ / a t ) ~ / ( a u / a t ) ~  3 = - 0.37 and 

Since the large values of \el occur only rarely, it is inevitable that the data be 
least accurate on the ‘tails’ of the probability density functions. This also makes 
very risky the business of calculating the higher moments, which weight the 

-~ 
- 0.076. 
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FIGURE 18. Probability distributions of u, aulat, au2/at2 (a) in grid-generated 
turbulence, Rh = 72, ( b )  on the axis of a round jet, R, = 830.f, = f *. 
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tails heavily, so no estimates on the higher moments based on the probability 
density data are presented. 

Since the directly measured data are the probability distributions, rather than 
densities, it  is easier and more accurate to compare these with the normal dis- 
tribution function. The probability distribution functions, 

Prob (e ,  < a) = Ja Pen@) db, 
-a3 

were plotted in a normal probability scale, i.e. a scale on which the normal dis- 
tribution function would be a straight line. 

The probability distributions of u, aulat and 82ulat2 at Rh = 72 and 830 are 
shown in figures 18(a, b) .  We see again that the u ’s  are nearly normal, the 
derivatives less so. 

- 3  -2 - 1  0 1 2 3 4 

a 

FIGURE 19. Probability distributions of Pu/at2 a t  various Reynolds numbers R,,. 

To demonstrate the variation with Reynolds number, probability distributions 
of a2u/8t2 at various Reynolds numbers are shown in figure 19. a2u/at2 deviates 
increasingly from normality as Reynolds number increases. 

Next, the probability distribution of various frequency constituents (via band- 
pass filter) were measured in grid-generated turbulence at  R, = 110. They are 
compared with normal distribution in figure 20, which shows that the low 
frequency part of the signal has a normal distribution, while the higher frequency 
parts do not. The deviation from normality increases as frequency increases. 
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The proba,bility distribution of the signal from the high-pass Butterworth filter,t 
figure 21, does not agree with normal distribution at all. It departs in much the 
same way as the band-pass signal with f, = 6-3  kHz. 

TO test Kolmogorov’s (1962) conjecture, and Gurvich & Yaglom’s (1967) 
prediction that a non-negative quantity governed by the fine-structure of the 
motion has a log-normal distribution at large Reynolds numbers, the probability 
distribution of e2(t) was computed from that of e, where e is velocity fluctuation, 
velocity derivative, band-pass or high-pass signal. 

1 -  

Gaussian 

X I 3  

I I I I I I I 
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where a represents the values possibly taken on by r ( t ) ,  and b the values 
possibly taken on by s(t) .  a(b) is a mathematical form identical to r(s). I n  the 
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FIGURE 2 1. Probability distribution of velocity signal through a high-pass Butterworth 
filter. Low cut-off a t  5 kHz.f, = f* = 5.9 kHz. Grid-generated turbulence, R, = 110. 

Similarly, we find the distribution function, 

Prob { e t  < b} = Prob {e ,  6 Jb}  - Prob {e ,  6 - Jb}. (3.11) 

Prob {et 6 b) is plotted on a normal probability scale against lnb, so that 
‘log-normal distribution functions ’ would appear as straight lines. 

The probability distributions of u2, and (a2u/at2)2 at R, = 72 and 830 
are shown in figures 22(a, b).  The results suggest that derivatives of increasing 
order agree better with log-normality. (a2u/at2)2 agrees well over the distribution 
range 0.35 to 0-9. 

To look for a variation with Reynolds number, the probability distributions 
of (a2u/at2)2 at four Reynolds numbers are shown in figure 23, Evidently, the 
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distribution of ( 2 2 ~ / 2 t 2 ) 2  is approximated better by a log-normal distribution as 
Reynolds number increases, although the differences are not redly significant 
for the three larger values. 

The probability distributions of the squares of band-pass signals, figure 24 (a),  
show that with higher midband frequency, the agreement with a log-normal 
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FIGURE 22. Probability distribution of uz, ( a ~ / a t ) ~ ,  ( ~ Y U / W ) ~  compared to log-normal. 
f, = f *. (a) Grid-generated turbulence, R, = 72. ( b )  Jet axis, R, = 830. 
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distribution improves. When the amplitude el(e2)* is smaller than 11433, i.e. for 
distribution function less than 0-3 the distribution departs from log-normality. 
It should be pointed out that, in the low amplitude range, electronic noise may 
contribute appreciably, so the turbulence signal may be log-normal over a 
broader range of values than indicated by these measurements. 

The probability distribution of the square of the high-pass signal from a 
Butterworth filter is shown in figure 24(b) .  This, too, agrees with a log-normal 
distribution, except in the low amplitude range. 
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FIGURE 23. Probability distribution of (i32u/i3t2)2, a t  various Reynolds 
numbers, compared to log-normal lines. 

3.4. Intermittency characteristics 

It was pointed out earlier that flatness factor departures from the normal value 
(3-0) do not necessarily indicate intermittency. It is therefore important to 
measure intermittency factor explicitly. This was done for band-pass signals in 
grid-generated turbulence and on the axes of round jets. The dependence on 
Reynolds number was investigated. The bandwidth of the Krohn-Hite filter 
was set at Aflf, = 0.52 and the midband frequency at  f ,  = f *. Two quantities 
were measured: the intermittency factory, equal to the fraction of space occupied 
by the fine-structure, and the average number of the fine-structure regions 
detected by the hot-wire per unit time n. The average width ( W )  of the inter- 
cepting chord lines crossing fine-structure regions is 

( W )  = y w ,  (3.12) 

where a is the mean velocity. The intermittency factor y and the ratio of ( W )  
to the Kolmogorov microscale 7 are shown in figure 25 as functions of R,. 
Both y and ( W ) / y  decrease monotonically with R, and seem to  reach asymptotic 
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values at R, of the order of several hundreds. This result implies that there is a 
decrease in the relative fluid volume occuped by fine-structure of given size as 
the Reynolds number is increased. 
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FIGURE 24. Probability distributions of e2, the square of filtered velocity signals in grid- 
generated turbulence at R, = 110. f, = f*. Lines are log-normal. (a) Band-pass with 
Afif ,  = 0.52; f m  is midband frequency. ( b )  5 kHz high-pass Butterworth filter. 
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FIGURE 26. Intermittency characteristics of band-pass signals as functions of midband 
frequency f,,,, in grid-generated turbulence, R, = 110. k, = 2~rf,,,/U, f * = 5.9 kHz. 
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In  the grid-generated turbulence a t  R, = 110, the intermittency characteristics 
of band-pass signals were measured to investigate possible dependence on wave- 
number, assuming the Taylor approximation. The filter bandwidth was 
Aflf, = 0-52. The intermittency factor y and the non-dimensional width ( W )  k,, 
where L, = 2~f, ,J0,  are shown in figure 26 as a function of f,lf*. ( W ) k ,  is a 
measure of the ratio of an average linear dimension of fine-structure containing 
regions to the size of the particular ‘narrow-band’ fine-structure used to identify 
them (i.e. with which they are ‘active’). For R, = 110, both y and ( W ) k m  
decrease monotonically with increasing fmlf* ,  hence with increasing L,. The 
former means that the relative fluid volume occupied by eddies with size of 
order k;I decreases with increasing k,, which is consistent with a suggestion of 
Batchelor & Townsend (see $ 1 ) .  The latter means that, for fixed R,, the linear 
dimension of a fine-structure region ( W )  decreases relative to the ‘eddy size’ 
khl, which identifies (or activates) it, for smaller and smaller eddy sizes (fine- 
structure). 

From the numerical values of ( W )  km in figure 26, we see that, over the full 
range of fine-structure examined (0*7f* <f9,, < 1.7f*), the domains of fine- 
structure are much larger than the fine-structure itself: 15 < ( W )  k, < 35. 

Batchelor & Townsend (1949) suggested y$’ = 3.0 (equation (3.2)) for the 
relationship between the flatness factor and intermittency factor of an inter- 
mittent variable. y and P of the band-pass signal (Af/f, = 0.52, f, = f *) in a 
grid-generated turbulence (R, = 110) were measured to be 0-58 and 13, re- 
spectively. y F  = 7.5 differs significantly from 3-0. Of course, yF = 3.0 assumes 
intermittent signals whose high-intensity state is normal, and whose low- 
intensity state is zero. The departure here may be associated with violation of 
either assumption, or both. 
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Contract 4010(05). Their support is much appreciated. The paper is adapted from 
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Appendix. Some properties of the log-normal probability distribution 

In  order to take into account the large spatial non-uniformities of turbulent 
energy dissipation rate, Oboukhov (1962) and Kolmogorov (1962) proposed a 
modified version of the original universal similarity hypothesis. The modification 
involved the assumption that the logarithm of the energy dissipation rate has 
a normal distribution. Gurvich & Yaglom (1967) devised a theory for this, in 
the sense that they offered more primitive hypotheses which yielded the pre- 
diction that any non-negative quantity (e.g. energy dissipation rate) governed 
by fine-scale components has a log-normal probability distribution function. 

function 
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The possible log-normality has been tested experimentally by several in- 
vestigators (Gurvich & Yaglom 1967; Sheih 1969; Stewart, Wilson & Burling 
1970; Gibson, Stegen & Williams 1970; Wyngaard & Tennekes 1970), but 
no unique way of curve fitting has been used up to now. Furthermore, no detailed 
discussion of the behaviour of a log-normal density function has been given. 
In  this appendix, the method used in 3 3.3 to try to fit the data with log-normal 
curves is described, and some moments of the log-normal density are compared 
with direct measurements. The behaviour of a log-normal density function is 
discussed, including its implication for intermittency. 

B 'log-normal probability distribution' is one for which the logarithm of the 
(non-negative) random variable e has a normal probability distribution, i.e. 

where m = (lne), and P2 = ((lns-rn)2). 

letting c be the possible value of e, 
We can compute arbitrary moments. Write y = Ins; then dylde = l/e and, 

thus, 
p, (c )  = -~ 1 exp [ - (In .--I. c - m)2 

42n Pc 2 p  
The Kth moment of E is 

" 1  (In c - m)2 

thus, (@) = exp (mK + *K2P2). (A 3) 

(6) = exp (m + $p2) = exp (Ins) exp (QP2). In particular, 

It is convenient to non-dimensionalize. Write E ,  = e / ( e ) .  Then the p.d.f. of 
this normalized variable is 

p,(4 = (4 PE(sn(+); 

thus, 

The distribution function is 

thus, 

where y = lnz. 

Equation (A 5) on normal probability paper, with Ins as amplitude variable, 
gives a family of straight lines because it is a normal distribution for y = lne,, 
with parameter P. The mean is - &p2 and the variance is p. 

A way to see how closely a set of probability distribution data points may be 
approximated by a log-normal distribution is to try to fit these data points with 
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a straight line on a normal probability paper with amplitude plotted in a logarith- 
mic scale. There are two parameters to be adjusted in choosing the ‘best’ straight 
lines: (i) p, which determines the slope, 

2P = (In - (In So.,,), 

where S,.,, and S,,.,, are the values such that 

Prob{e, 4 S,.,,) = 0.16, 

(the probability that a normal variable is less than the negative of its variance) 

Prob{e, 6 So.*,} = 0.84, 

(the probability that a normal variable is less than its variance), (ii) (e), which 
determines the location of the straight line. Different choices of (e) only add a 
constant to In en, shifting the straight line parallel to itself. 

In  the actual curve fitting for § 3.3, p was chosen so that the straight line would 
fit as many data points as possible. The mean (e2) of the non-negative random 
variable was used as (8) to non-dimensionalize the variable e2 for convenience; 
no attempt was made to determine the best (E), since different choices of (e) only 
translate the straight line horizontally. If the data were truly log-normally dis- 
tributed, then (e2) = (e), so {e2) would be the best choice for (e); the straight line 
would be one of the family with In en having a mean of - &,/I2 and a variance of /3. 

In figure 24(b), for example, the straight line corresponds to a log-normal dis- 
tribution with /3 = 2.1. Then, according to (A 5), 

In ek/(e) = In#,., = -p2/2 = - 2.2, 

where e2, is the median of e2. But this high-pass signal e2 is non-dimensionalized 
by (e2) in figure 24(b), and the straight line has 

lne;/(e2) = In#,., = -0.16; 

thus, In(e)/(e2) = 0-6 or (e) = 1.82(e2). (A 6) 

Similarly, the probability distribution of the band-pass signal with Aflf,, = 0-52 
and f, = 6.3kHz in figure 24(a) shows 

(e) = 1.68(e2). (A 7) 

Both of these ratios (e)/(e2) depart appreciably from 1.0, the value required for 
a log-normal distribution. As a further check, we note that, if e2 were log-normal, 
then the flatness factor of e would be 

The band-pass signal data in figure 24(a) give P equal to about 80-100 
(fn% = 6.3 kHz). Direct measurement, on the other hand, gives 16. 

The fact that a log-normal distribution predicts much larger second and 
(especially) fourth moments than are observedsuggests that the largevalues of the 
actual e2are far less probable than would be required by log-normality. This devia- 
tion at  large amplitude was also reported by Stewart, Wilson & Burling (1970). 

To see how a log-normally distributed random variable might appear inter- 
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mittent, we examine some features of the probability density function (A 4). 
The peak is located by setting dP,n(x)ldz = 0. 

(A 9) 

(A 10) 

(A 11) 

With (A 4), this gives 
(en)max = ~ X P  ( - 8P2), 

en[(en)maxI = __ ~ X P  (P2), 
1 

J2nP 
and 

4.0 4.2 4.4 4.6 4.8 

3 

FIGURE 27. Log-normal probability density c'urves. 

where (en),,, is the location at  which pEn(x)  is maximum. Equations (A 10) and 
(A 11) show that the peak of the probability density function will increase 
rapidly, and its e-location will move toward zero as p increases. This extreme 
peak near en = 0 is certainly consistent with a signal which spends a lot of its 
time near zero. Of course, if this time is not in relatively extended periods, the 
signal will still not appear to be intermittent. 

Another ramification is shown by the sign of aP,,/aP. From (Act), 

thus, 

i.e. if en > exp((P4/4+p2)4), or en < exp(-(P4/4+P2)'), 
and aP,/ap < 0, if exp ( - (P4/4 +,@)*) < e, < exp ((p4/4+P2)4). 

Therefore, as P increases, the probability density at  very large and very small 
values of e, will increase and that at  intermediate values of en will decrease. Some 
log-normal probability density curves with various p are shown in figure 27, and 
they snggest that the randomvariable will appear intermittent if pis large enough. 
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FIGURE 11. Oscillograms. Grid-generated turbulence (R,  = 110,f* = 5.9 kHz). (a) Of band- 
and high-pass signals from a wire: (i)fm = 200H2, Afifm = 0.52, 20ms/division (horizontal 
scale); (ii) 1 kHz, 0.52, 4; (iii) 6, 0.52, 1; (iv) high-pass signal, f, = SkHz, lms/division. 
( b )  Of velocity fluctuation and time derivatives: (i) u(t), 4ms/division; (ii) &/at, 2; (iii) 
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